2015 James S. Rickards Fall Invitational

For all questions, the answer choice (E) NOTA means that none of the given answers is correct. Good Luck!

(1-5) Let's get started with some limits and derivatives!								
1. If $f(x) = (x+1)(x+2)$, find $f'(0)$.								
(A) 2	(B) 3	(C) 5	(D) 7	(E) NOTA				
2. Suppose that [left $g(x) = -x^2 - 2x$	2. Suppose that $[left =]align*f(x) = x^4 - x^3 - 3x^2 + x + 2$ $g(x) = -x^2 - 2x - 1$ If $h(x)$ is a continuous function such that $f(x) \ge h(x) \ge g(x)$ for all x , find $\lim_{x \to -1} h(x)$.							
(A) -1	(B) 0	(C) 1	(D) need more info	(E) NOTA				
3. Find $\lim_{x \to \infty} \frac{\sqrt{x^2 + x^2}}{x^2 + x^2}$	3. Find $\lim_{x \to \infty} \frac{\sqrt{x^2 + 2x + 2}}{x}$.							
(A) 1	(B) $\sqrt{2}$	(C) $\sqrt{3}$	(D) 2	(E) NOTA				
4. Let $\lfloor x \rfloor$ denote the greatest integer less than or equal to x. Find $\lim_{x \to 5^-} (x \cdot \lfloor x \rfloor)$.								
(A) 16	(B) 20	(C) 25	(D) does not exist	(E) NOTA				
5. Given that $y = xe^{xy}$, find $\frac{dy}{dx}$ where defined.								
(A) $\frac{y + xy^2}{x - x^2y}$	(B) $\frac{y + xy^2}{x + x^2y}$	(C) $\frac{x + xy^2}{x - x^2y}$	(D) $\frac{x + xy^2}{x + x^2y}$	(E) NOTA				

(6-10) Recall from Precalculus that $\sin^2(x) + \cos^2(x) = 1$. Let's put this fact to use! **6.** Where defined, find $\frac{d}{dx} \left(\frac{\cos(x)}{\sin(x)} \right)$. (A) $\sec^2(x)$ (B) $-\sec^2(x)$ (C) $\csc^2(x)$ (D) $-\csc^2(x)$ (E) NOTA 7. What is the area of the region in the xy-plane bounded by the graphs of $y = \sin^2(x)$, $y = -\cos^2(x)$, $x = -\pi/4$, and $x = \pi/4?$ **(A)** π/8 **(B)** π/4 (C) $\pi/2$ **(D)** π (E) NOTA 8. At time t = 0 seconds, a particle starts at the point (3, 0). If the position of the particle after t seconds have elapsed is $(3\cos(t), 3\sin(t))$, what is the distance traveled by the particle in the first 3π seconds? **(A)** 3π **(B)** 6π **(C)** 9π **(D)** 12π (E) NOTA **9.** Compute $\left(\int_0^1 x \sin(x) \, dx\right)^2$. (A) $1 - \sin(2)$ **(B)** $1 - 2\sin(1)$ (C) $1 - 2\cos(1)$ (D) 1 (E) NOTA **10.** Compute $\int_0^{\pi/2} \sin^2(x) \, dx$. (A) ¹/₂ **(B)** π/4 **(C)** 1 (D) $\pi/2$ (E) NOTA

2015 James S. Rickards Fall Invitational

1. i	You're running a for \$50, how mar	widget factory at which in ny widgets should you ma	it costs $(100 - 10w + w^2)$ ke to maximize your tota) to make w widgets. If y al profit?	ou can sell each widge
	(A) 10	(B) 20	(C) 30	(D) 40	(E) NOTA
L 2.]	Farmer Alex has area along a very	140 meters of fencing to long, perfectly straight	build a rectangular graz	ing area for his cow. He river to form one boundar	is building the grazin ry of the rectangle. T
[2.]	Farmer Alex has area along a very maximize the gra	140 meters of fencing to v long, perfectly straight azing area, what should b	build a rectangular graz river, so he can use the river be the length of the longer (α)	ting area for his cow. He river to form one boundar st side of the rectangle (ir	is building the grazin ry of the rectangle. T n meters)?

- (A) 1 (B) $\ln(4)$ (C) 2 (D) e (E) NOTA
- 14. Your ice cream has melted and perfectly fills up your giant ice cream cone, which has radius 10 inches and height 20 inches. Unfortunately, there is a small hole in the bottom (apex) of the cone, and the ice cream is leaking out at a constant rate of 100π cubic inches per minute. At what rate (in inches per minute) is the height of your ice cream decreasing when the height of your ice cream is 10 inches?
 - (A) $\frac{1}{2}$ (B) 1 (C) 2 (D) 4 (E) NOTA
- 15. Newton's Law of Cooling says that the rate at which an object is cooling is directly proportional to the difference in temperature between an object and its surroundings. A bottle of water (initially 70°F) is placed in a freezer which has a constant temperature of 30°F, and after 30 minutes the bottle of water is 50°F. Using Newton's Law of Cooling, find the temperature of the bottle after another 30 minutes have passed.

Hint: The definition of Newton's Law of Cooling gives us $\frac{d\theta}{dt} = k (\theta - 30^{\circ} \text{F})$, where $\theta(0) = 70^{\circ} \text{F}$ and $\theta(30) = 50^{\circ} \text{F}$. We can rewrite this as $\frac{d\theta}{\theta - 30} = k dt$. Integrate the left-side with respect to θ and the right-side with respect to t.

(A) 32°F	(B) 35°F	(C) 36°F	(D) 40°F	(E) NOTA

(16-20) Let's use Calculus to find some areas!

16.	Using a left-hand Riemann rectangular approximation with 4 equal subdivisions, approximate	\int_{0}^{π}	$\sin(x)dx.$	You
	may find the following values useful:	50		

 $\sin(0) = 0, \qquad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \qquad \sin\left(\frac{\pi}{2}\right) = 1, \qquad \sin\left(\frac{3\pi}{4}\right) = \frac{\sqrt{2}}{2}, \qquad \sin(\pi) = 0.$ (A) $\frac{\sqrt{2}}{4} \cdot \pi$ (B) $\frac{2+\sqrt{2}}{8} \cdot \pi$ (C) $\pi/2$ (D) $\frac{1+\sqrt{2}}{4} \cdot \pi$ (E) NOTA

17. Using a right-hand Riemann rectangular approximation with 4 equal subdivisions, approximate $\int_{0}^{\pi} \sin(x) dx$.

(A) $\frac{1}{4} \cdot \pi$ (B) $\frac{1}{8} \cdot \pi$ (C) $\frac{\pi}{2}$ (D) $\frac{1}{4} \cdot \pi$ (E) NO.	(A) $\frac{\sqrt{2}}{4} \cdot \pi$	(B) $\frac{2+\sqrt{2}}{8} \cdot \pi$	(C) $\pi/2$	(D) $\frac{1+\sqrt{2}}{4} \cdot \pi$	(E) NOTA
---	------------------------------------	--------------------------------------	-------------	--------------------------------------	----------

18.	Using a trapezoidal appr	oximation with 4 equal s	ubdivisions, approximate	$\int_{0}^{\pi} \sin(x) dx.$	
	(A) $\frac{\sqrt{2}}{4} \cdot \pi$	(B) $\frac{2+\sqrt{2}}{8} \cdot \pi$	(C) ^π / ₂	(D) $\frac{1+\sqrt{2}}{4} \cdot \pi$	(E) NOTA

19. Find the area of the region in the xy-plane bounded by the graphs of y = 0, $y = \sin(x)$, x = 0 and $x = \pi$. (A) 1 (B) $\pi/2$ (C) 2 (D) π (E) NOTA

20. Find area of the region in the xy-plane bounded by the graphs of $y = \sin^2(x)$ and $y = \cos^2(x)$ for $-\pi/4 \le x \le \pi/4$. (A) 1/2 (B) 1 (C) 2 (D) 4 (E) NOTA (21 - 25) Let's do some sequences/series. There are very helpful hints in each of the questions!

(26-30) Let's finish up with some assorted interesting problems. Good luck!

26. Let f(x) be a continuous function such that f'(x) = -f'(-x) for all $x \neq 0$. Is it necessarily true that f'(0) = 0? (A) Yes (B) No

27.	Compute $\int_{1}^{4} \frac{1}{x + \sqrt{x}} dx$	с.			
	(A) $\ln(3/2)$	(B) $\sqrt{2} - 1$	(C) $\frac{\pi}{4}$	(D) $\ln(9/4)$	(E) NOTA
28.	A cylinder has surface a should be the ratio of it (A) 1:2	rea 2015 square inches (in s radius to its height? (B) 2:3	(C) 3:2	s). In order to maximize it (D) 2 : 1	s volume, what (E) NOTA
29.	How many values $x = c$ (A) 4	satisfy Rolle's Theorem f (B) 5	for the function $f(x) = x$ (C) 6	$\sin(x)$ on the interval $x \in$ (D) 7	[-10, 10]? (E) NOTA

30. Let $f(x) = x^6 - 6x^2 + 6x - 7$, and note that f'(x) = 0 has exactly three real number solutions: a, b, and c. If g(x) is a polynomial of degree two such that g(a) = f(a), g(b) = f(b), and g(c) = f(c), find g(2).

Hint: Since f'(x) = 0 for x = a, b, c, we know that $g(x) = f(x) + f'(x) \cdot h(x)$ at x = a, b, c for any h(x). (A) -13 (B) -11 (C) -7 (D) 45 (E) NOTA